
J. Fluid Mech. (2008), vol. 596, pp. 285–311. c© 2008 Cambridge University Press

doi:10.1017/S0022112007009597 Printed in the United Kingdom

285

Instability of a viscous coflowing jet in a radial
electric field

FANG LI, XIE-YUAN YIN AND XIE-ZHEN YIN
Department of Modern Mechanics, University of Science and Technology of China,

Hefei, Anhui 230027, China
xzyin@ustc.edu.cn

(Received 25 June 2006 and in revised form 2 October 2007)

A temporal linear instability analysis of a charged coflowing jet with two immiscible
viscous liquids in a radial electric field is carried out for axisymmetric disturbances.
According to the magnitude of the liquid viscosity relative to the ambient air viscosity,
two generic cases are considered. The analytical dimensionless dispersion relations are
derived and solved numerically. Two unstable modes, namely the para-sinuous mode
and the para-varicose mode, are identified in the Rayleigh regime. The para-sinuous
mode is found to always be dominant in the jet instability. Liquid viscosity clearly sta-
bilizes the growth rates of the unstable modes, but its effect on the cut-off wavenumber
is negligible. The radial electric field has a dual effect on the modes, stabilizing them
when the electrical Euler number is smaller than a critical value and destabilizing
them when it exceeds that value. Moreover, the electrical Euler number and Weber
number increase the dominant and cut-off wavenumbers significantly. Based on
the Taylor–Melcher leaky dielectric theory, two limit cases, i.e. the small electrical
relaxation time limit (SERT) and the large electrical relaxation time limit (LERT),
are discussed. For coflowing jets having a highly conducting outer liquid, SERT may
serve as a good approximation. In addition, the dispersion relations under the thin
layer approximation are derived, and it is concluded that the accuracy of the thin
layer approximation is closely related to the values of the dimensionless parameters.

1. Introduction
Coaxial electrospraying is a new effective technique to form micro/nano capsules

that are monodisperse and controllable. It has many applications in the drug industry,
food additives, paper manufacture, painting and coating processes. In experiments,
when two immiscible liquids are emitted from two homocentric capillary tubes,
respectively, under appropriate flow and electric field conditions, a stationary Taylor
cone is formed. At the tip of the Taylor cone, a steady axisymmetric coaxial jet with
nearly uniform diameter arises. The coaxial jet is intrinsically unstable, and breaks
up into micro compound droplets at some distance downstream. This is called the
cone-jet coaxial electrospraying mode (Loscertales et al. 2002).

Recently, many experiments have been carried out to investigate the mechanism
of coaxial electrospraying and the scaling laws between important quantities, e.g.
Loscertales et al. (2002), López-Herrera et al. (2003), Chen et al. (2005) and Marı́n
et al. (2007). Theoretical and numerical work by Li, Yin & Yin (2005, 2006)
has analysed the linear instability of an inviscid coaxial jet having a conduc-
ting annular liquid under a radial electric field, where both the equipotential and
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non-equipotential cases were studied; Higuera (2007) performed a brief but valuable
numerical simulation of a stationary electrified coaxial jet in the framework of the
leaky dielectric model and quasi-uni-directional approximation.

The breakup process of a liquid jet under an electric field is closely related to the
growth and propagation of unstable disturbance waves at the interface between fluids.
Therefore, instability analysis is useful in predicting the breakup modes of liquid jets,
and also in predicting the intact jet length and droplet size (Chandrasekhar 1961; Shen
& Li 1996; Chen & Lin 2002). In the instability analysis of electrically charged single
liquid jets, two kinds of electric field, i.e. radial and axial, are usually encountered. Also,
the electrical properties of liquids may be of a perfect conductor, perfect dielectric or
leaky dielectric (dielectric with finite conductivity). Thus, many cases can arise due to
the variation of the electric field imposed on the jet and electrical properties of the
liquid. For instance, Turnbull (1992, 1996) analysed the temporal linear stability of
conducting and insulating liquid jets in the presence of both radial and axial electric
fields; Saville (1971) and Mestel (1994, 1996) studied the stability of a charged leaky
dielectric liquid jet under a tangential electric field, paying particular attention to
the effect of liquid viscosity; López-Herrera, Riesco-Chueca & Gañán-Calvo (2005)
researched the stability of a viscous leaky dielectric liquid jet under a radial electric
field, taking into account the effect of ambient air flow. Garcı́a et al. (1997) and
González, Garcı́a & Castellanos (2003) investigated the effect of AC radial electric
fields on the instability of liquid jets. Huebner & Chu (1971) and Son & Ohba (1998),
respectively, explored the jet instability under axisymmetric and non-axisymmetric
disturbances. More recently, nonlinear effects have been specially studied in order to
explain the experimental phenomena, such as the formation of satellite droplets (e.g.
López-Herrera, Gañán-Calvo & Perez-Saborid 1999; López-Herrera & Gañán-Calvo
2004; Zakaria 2000; Elhefnawy, Agoor & Elcoot 2001; Elhefnawy, Moatimid &
Elcoot 2004; Moatimid 2003).

In most of the published reports, the liquid jet is usually assumed to be
either perfectly conducting or perfectly dielectric. In practice, most liquids used
in experiments are leaky dielectric. Unlike prefect conductors or dielectrics, for leaky
dielectrics free charge may occur in the fluid bulk and therefore electromechanical
coupling occurs not only at interface but probably also in the bulk. Furthermore,
electric stresses on an interface are no longer perpendicular to it, because free charge
accumulated on the interface may modify the electric field. From this point of view,
electric stresses tangential to the interface are inevitable, and must be balanced by
viscous stresses. For perfect conductors or perfect dielectrics, the tangential component
of electric stress vanishes, because free charge is reset instantaneously on the interface
to keep the interface equipotential for the former, and it is absent for the latter (Saville
1997).

In the authors’ previous studies (Li et al. 2005, 2006), the assumption that the inner
and outer liquids are inviscid was made in the instability analysis of the electrified
coaxial jet. However, with such an assumption the tangential component of electric
stress on the interface cannot be balanced due to the absence of liquid viscosity.
Moreover, liquid viscosity may play an important role in the jet instability, because
the diameter of the coaxial jet generated in electrospraying experiments is very small,
usually of the order of several tens of micrometres. Therefore, from this physical
point of view, it is incorrect to neglect the viscosity of liquid. In the current paper,
we propose a viscous leaky dielectric model, based on the theory of the Taylor–
Melcher leaky dielectric model (Melcher & Taylor 1969; Saville 1997), to study the
axisymmetric instability behaviour of the charged coaxial jet under a radial electric
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Figure 1. Schematic description of the theoretical model.

field. We aim to gain further insight into the outer-driving coaxial electrospraying
studied by Li et al. (2005, 2006).

Accordingly the outer liquid is assumed to be a leaky dielectric, acting as the driving
liquid. Furthermore, the conductivity of the outer liquid is assumed to be large enough
so that free charge is relaxed to the interface instantaneously. The inner liquid in the
outer-driving coaxial electrospraying, for a generic case, should be considered as a
leaky dielectric too. Though the conductivity of the inner fluid is much smaller than
that of the outer liquid, it is sufficient to have charge relaxed and transferred to the
interface, where the distribution of charge density is determined by the surface charge
conservation equation. In such a leaky dielectric case, both the conductivity ratio of
inner to outer liquid and the electrical relaxation time of the inner liquid are taken
into account. The initial steady state may be solved following the method provided
by Higuera (2007). In the outer-driving electrospraying experiments the electrical
conductivity of the inner liquid is at least two or three orders of magnitude smaller
than that of the outer liquid (López-Herrera et al. 2003). Also, in the numerical
simulation of Higuera (2007) it was found that the charge density at the inner
interface is about two orders smaller than that at the outer interface. Therefore the
conductivity of the inner liquid is negligible, and free charge can be supposed to
lie approximately only on the outer air–liquid interface in theoretical studies. In our
model the inner liquid is approximated as a perfect dielectric and there is no free
charge at the inner liquid–liquid interface. Such an approximation can be deduced
from the generic leaky dielectric model, assuming that the outer-to-inner conductivity
ratio approaches infinite.

The paper is organized as follows. In § 2, the theoretical leaky dielectric model
of the viscous coflowing jet is described, and the governing equations and boundary
conditions are given. In particular, the basic velocity profile is discussed. The analytical
dispersion relation is derived. In § 3, the complex eigenfrequency is calculated
numerically. The effects of the viscosity of the inner and outer liquids, the radial
electric field and the surface tension are discussed. The cases of small and large
electrical relaxation time are outlined. The thin layer approximation is derived and
discussed. Finally, the main conclusions are drawn in § 4.

2. Theoretical model
Consider an infinitely long coflowing jet with two immiscible liquids surrounded

by the ambient air, as sketched in figure 1. The inner liquid cylinder has a radius
R1, and the outer liquid annulus has an exterior radius R2. An earthed annular
electrode of radius R3 is positioned surrounding the jet, and a voltage V0 is imposed
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on the jet surface. The electrical property of the outer liquid is assumed to be leaky
dielectric; the inner liquid and air are perfect dielectrics. A basic radial electric field
of magnitude −V0/[r ln (R2/R3)] is thus formed in the air. Free charge is assumed to
be relaxed on the interface between the air and outer liquid instantaneously, owing to
the conductivity of the outer liquid. The density of surface charge on the unperturbed
air–liquid interface is −ε3V0/[R2 ln (R2/R3)].

The liquids and air are considered to be incompressible and Newtonian. The flow
is axisymmetric. Effects of gravitational acceleration, magnetic field and temperature
are ignored. The governing equations of the flow are

∇ · ui = 0, i = 1, 2, 3, (2.1)

ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi + µi∇2ui , i = 1, 2, 3, (2.2)

where u, ρ, p and µ are the velocity, density, pressure and dynamic viscosity,
respectively. The subscripts 1, 2 and 3 denote the inner liquid, the outer liquid and
the ambient air, respectively.

When the jet is perturbed by an arbitrary disturbance, both the inner liquid–liquid
interface and the outer air–liquid interface depart from their original equilibrium
positions. For infinitesimal disturbances, their new positions can be expressed as
r = Rj + ηj , j = 1, 2, where ηj is the displacement of the interface from Rj , and the
subscripts 1 and 2 denote the inner and outer interfaces, respectively. In this paper
only the axisymmetric instability is considered, so ηj = ηj (z, t).

The boundary conditions include the no-slip condition at the electrode, i.e.

u3 = 0 at r = R3; (2.3)

the continuity of the velocity at the inner and outer interfaces, i.e.

u2 = u3 at r = R2 + η2, (2.4)

u1 = u2 at r = R1 + η1; (2.5)

the finiteness of the velocity at the symmetric axis, i.e.

u1 < ∞ at r = 0; (2.6)

the kinematic boundary conditions at the interfaces, i.e.

u1,2 =

(
∂

∂t
+ u1,2 · ∇

)
η1 at r = R1 + η1, (2.7)

u2,3 =

(
∂

∂t
+ u2,3 · ∇

)
η2 at r = R2 + η2, (2.8)

where u is the radial velocity component; and the dynamic boundary conditions at
the interfaces, i.e.

(T2 − T1) · n1 − γ1 (∇ · n1) n1 = 0 at r = R1 + η1, (2.9)

(T3 − T2) · n2 − γ2 (∇ · n2) n2 = 0 at r = R2 + η2, (2.10)

where T is the stress tensor, γ is the surface tension, n is the normal unit vector and
∇ · n is the curvature. For the axisymmetric case,

nj =
(1, −ηjz)√

1 + η2
jz

and ∇ · nj =
1√

1 + η2
jz

(
1

Rj + ηj

− ηjzz

1 + η2
jz

)
, j = 1, 2,
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where ηz and ηzz are the first- and second-order partial derivatives of η with respect
to z, respectively. In the presence of an electric field, the stress tensor T includes
not only the hydrodynamic stress tensor but also the electrical Maxwell tensor, i.e.
T = Th + Te, with Th = −pδ + µ[∇u + (∇u)T ] and Te = εE − 1

2
εE · Eδ, where δ is the

identity matrix and E is the electric field intensity.
The governing equations and boundary conditions related to the electric field are

needed to close the problem. As free charge is absent in the bulk, the Maxwell
equations in the liquids and air reduce to

∇ · Ei = 0 and ∇ × Ei = 0, i = 1, 2, 3.

Introduce an electrical potential function ψi , satisfying the Laplace equation:

∇2ψi = 0, i = 1, 2, 3, (2.11)

and the electric field intensity Ei = −∇ψi .
The electrical boundary conditions are (a) zero electrical potential at the annular

electrode, i.e.

ψ3 = 0 at r = R3; (2.12)

(b) the finiteness of the electric field at the symmetric axis, i.e.

E1 = 0 at r = 0; (2.13)

(c) continuity of the tangential component of the electric field at the inner and outer
interfaces, i.e.

nj × [E] = 0 at r = Rj + ηj , j = 1, 2, (2.14)

where the symbol [ · ] indicates the jump of the corresponding quantity across the
interface; (d) continuity of the normal component of the electric displacement at the
inner interface, i.e.

n1 · (ε2E2 − ε1E1) = 0 at r = R1 + η1; (2.15)

and (e) the Gauss law at the outer interface, i.e.

n2 · (ε3E3 − ε2E2) = qs at r = R2 + η2, (2.16)

where the surface charge density qs satisfies the surface charge conservation equation

∂qs

∂t
+ u · ∇qs − qsn · (n · ∇)u + [σ E] · n = 0. (2.17)

The four terms on the left-hand side of equation (2.17) represent the contributions
of charge accumulation, surface convection, surface dilation and bulk conduction,
respectively (Saville 1997).

Before the instability analysis, the basic velocity profile of the jet in the unperturbed
state should be obtained. As the jet is perfectly cylindrical and the flow is axisymmetric,
the basic velocity field is unidirectional, i.e. u =W (r)ez, where W is the axial velocity
component and ez is the unit vector in the axial direction. Therefore the momentum
equation (2.2) reduces to(

d2Wi

dr2
+

1

r

dWi

dr

)
= −Gi

µi

, i = 1, 2, 3, (2.18)

where Gi = −∂pi/∂z is the negative of the streamwise pressure gradient (Chen & Lin
2002). According to the balance of forces on the interfaces, the pressure gradients
in the liquids and air should be equal, i.e. Gi = G. Integrating (2.18) and using the
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continuity conditions of the velocity and shear force on the interfaces, the solutions
of Wi are obtained. Choosing µ2, R2, and U2 (the velocity of the jet at the outer
interface, = G(R2

3 − R2
2)/(4µ3)) as the scales of dynamic viscosity, length and velocity,

respectively, we write the solutions Wi in the following dimensionless form:

W3 =
b2 − r2

b2 − 1
, (2.19a)

W2 = 1 + µr3

1 − r2

b2 − 1
, (2.19b)

W1 = 1 + µr3

1 − a2

b2 − 1
+

µr3

µr1

a2 − r2

b2 − 1
, (2.19c)

where two radius ratios are a = R1/R2, b =R3/R2, and two viscosity ratios are
µr1 = µ1/µ2, µr3 = µ3/µ2. Note that the logarithm function ln r included in general
solution of equation (2.18) by Chen & Lin (2002) vanishes owing to the absence of
the gravitational acceleration.

It can be seen from equations (2.19a)–(2.19c) that the basic velocity profile is closely
associated with the relative viscosity of the inner liquid and outer liquid and that of
air and the outer liquid. First, suppose the ambient air is almost inviscid, i.e. µr3 � 1.
According to equation (2.19b) the basic axial velocity of the outer liquid is nearly
uniform, i.e. W2 � 1. For the inner liquid, there are two cases: if its viscosity is of
the order of the air viscosity (i.e. µr1 ∼ O(µr3)), such as a dense gas (without lose
of generality, the inner liquid can be gas.), it can be seen from equation (2.19c) that
the corresponding basic velocity profile is still parabolic; conversely, if its viscosity is
much larger than that of the air (i.e. µr1 � µr3), such as various polymers and oils,
the basic velocity profile is also approximately uniform with the same magnitude as
the outer liquid. Therefore, in general, according to the magnitude of the inner liquid
viscosity, two cases are involved.
Case I: µr1 ∼ O(µr3), the basic axial velocity profile is

W3 = 1 +
1 − r2

b2 − 1
, W2 � 1, W1 � 1 + Λ

(
1 − r2

a2

)
, (2.20)

where the relative velocity ratio Λ =U0/U2 − 1 (U0 is the velocity of the jet at
the symmetric axis r = 0, � 1 + (µr3/µr1)(a

2/(b2 − 1)). Case II: µr1 � µr3, the basic
velocity profile is

W3 = 1 +
1 − r2

b2 − 1
, W2 � 1, W1 � 1. (2.21)

Figure 2 shows two typical basic velocity profiles; the axial velocity profile of
the inner liquid is apparently parabolic for µr1 = 0.018, corresponding to case I,
and appears to be uniform for µr1 = 43, corresponding to case II. In the following
instability analysis we assume that the outer liquid is viscous and the air is inviscid in
both cases and that the inner liquid is inviscid in case I and is viscous in case II. The
advantage of this is that an analytical dispersion relation can be obtained. Moreover,
the continuity of tangential force seems to be satisfied inherently for the simplified
velocity profiles in both cases. Numerical studies of the instability of a viscous coaxial
jet with leaky dielectric liquids in a radial electric field, have to our knowledge not
be reported before. The purpose of the present paper is to study this complicated
problem using a simplified theoretical model.

If an axisymmetric jet of a viscous liquid is subjected to an axial electric field, its
basic axial velocity profile is essentially parabolic, owing to the action of electrical
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Figure 2. The influence of the relative viscosity of the inner liquid on the basic velocity
profile, for µr3 = 0.018, a = 0.8 and b =2.

shear stress (Mestel 1994, 1996). However, as is well known, if both the viscosity
and the non-uniform velocity profile are considered, the dispersion relation in an
analytical form is beyond reach. In such a case either the velocity profile is assumed
to be uniform (Saville 1971; López-Herrera et al. 2005), or the viscosity of the liquid is
assumed to be low or high (Mestel 1994, 1996), or the wavelength of the disturbance is
assumed to be long (Turnbull 1992, 1996). But in this paper a radial electric field not
an axial electric field is studied. In the presence of a radial electric field the electrical
shear stress in the unperturbed state is absent as discussed above, and so the basic
velocity profile for viscous liquids can reasonably be considered to be uniform.

The Froude number Fr =U 2/gL (U is the characteristic velocity; g is the
gravitational acceleration; L the characteristic length) measures the relative effect
of gravity. If the characteristic length of the coaxial jet is not so small, Fr is finite.
In such a case, gravity may be as important as the axial electric field. Both gravity
and the axial electric field induce non-uniformity of the basic axial velocity, but their
effects may be opposite: if the axial electric field is in the same direction as gravity
(which is in accordance with most experimental situations), the electrical shear force
makes the velocity at the interface larger than in the liquid bulk, and with the spatial
evolution of the jet its effect is diffused into the bulk owing to liquid viscosity; on
the other hand, gravity, acting as a pressure gradient, induces a larger velocity in
the liquid centre. Consequently, the action of the axial electric field and gravity may
reach an equilibrium state as the jet evolves spatially and the well-developed jet has
an axial uniform velocity. In such a case, the uniform velocity profile approximation
is appropriate.

For infinitesimal axisymmetric disturbances, the perturbation of the interface (and
also of the other physical quantities), is decomposed into the form of a Fourier
exponential, i.e. ηj (z, t) = η̂j exp(ωt + ikz), j=1, 2, where η̂j is the initial amplitude
of the perturbation at the interface, ω is the complex wave frequency, the real and
imaginary parts of which are the temporal growth rate and frequency, respectively, k

is the real axial wavenumber related to the wavelength by k = 2π/λ, and the imaginary
unit i =

√
−1. Substituting the perturbation expression into the governing equations

and boundary conditions (2.1)–(2.17), the dispersion relation between ω and k is
obtained. The derivation details are given in Appendix A.
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Choosing ρ2, γ2, ρ2U
2
2 , ε3 and −V0/[R2 ln(R2/R3)] as the characteristic scales of

density, surface tension, pressure, electrical permittivity and electric field intensity,
respectively, the dispersion relation is written in the following dimensionless form:

D(k, ω) =

(
η̂2

η̂1

)
1

(
η̂1

η̂2

)
2

− 1 = 0, (2.22)

for case I, where (η̂2/η̂1)1 and (η̂1/η̂2)2 are the amplitude ratio of the initial disturbances
at the interfaces, expressed as

(
η̂2

η̂1

)
1

=

[
l2 + k2

a

4

(
EuReζ

ω
+ 1 +

l2

k2

)
− 2k2

a

3

(
EuReζ

ω
+ 2

)]−1

×
[
Re2H1
3
4 − 4lk2
3

(

6 − 1

la

4

)
+
4

(
(l2 + k2)
1−2k

a

3

)
l2 + k2

k

+

(
2k2

a

3 − l2 + k2

a

4

)
EuReξ

ω

]
(2.23a)

and(
η̂1

η̂2

)
2

=

[
4k2
3 − (l2 + k2)2

k2

4 + k((l2 + k2)
2
4 − 2lk
3
5)

EuReξ

ω

− Re2
3
4EukξJ

]−1[
Re2H2
3
4 − k
4((l

2 + k2)
2

+ 2k
3)

(
EuReζ

ω
+ 1 +

l2

k2

)
+2lk2
3

(

5 +

1

l

4

) (
EuReζ

ω
+ 2

)]
,

(2.23b)

respectively. The amplitude ratio (η̂2/η̂1)1 comes mainly from the dynamic balance at
the inner interface and (η̂1/η̂2)2 from the dynamic balance at the outer interface. The
symbols appearing in the dispersion equation are

H1 =
iSω

k

(
iω

I0(ka)

I1(ka)
− 2Λ

a

)
+

Γ

We a2
(1 − (ka)2), (2.24a)

H2 =
iQω

k

(
iωL − 2

b2 − 1

)
+ Eu(1 + k(ζ + 1)J ) − 1

We
(1 − k2), (2.24b)

J =
I1(k)K0(kb) + K1(k)I0(kb)

I0(k)K0(kb) − K0(k)I0(kb)
, (2.24c)

ζ =

−k

(
1 +

l2

k2

)

2


3

+ 2l

5


4

+
ReωJ

k

Re

k
(εr2(ω + τ )κ − ωJ ) +

EuRe

ω

(
k

2


3

− l

5


4

) , (2.24d)

ξ =

(
1 +

l2

k2

)
1


3

− 2


4

Re

k
(εr2(ω + τ )κ − ωJ ) +

EuRe

ω

(
k

2


3

− l

5


4

) , (2.24e)
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with

L =
I0(k)K1(kb) + K0(k)I1(kb)

I1(k)K1(kb) − K1(k)I1(kb)
, κ = −

I1(ka)
1 − εr2

εr1

I0(ka)
3

I1(ka)
0 − εr2

εr1

I0(ka)
2

.

And 
0 − 
6 are


0 = I0(ka)K0(k) − K0(ka)I0(k), 
1 = I0(ka)K1(k) + K0(ka)I1(k),


2 = I1(ka)K0(k) + K1(ka)I0(k), 
3 = I1(ka)K1(k) − K1(ka)I1(k),


4 = I1(la)K1(l) − K1(la)I1(l), 
5 = I1(la)K0(l) + K1(la)I0(l),


6 = I0(la)K1(l) + K0(la)I1(l),

where In(x) and Kn(x) (n = 0, 1) are the nth-order modified Bessel functions of the
first and second kinds. Here the wavenumber k and complex frequency ω have been
normalized by 1/R2 and U2/R2, respectively. In the following numerical section, we
mainly take case I as an example to illuminate the unstable modes and behaviours of
a viscous coflowing jet under a radial electric field. Case II is calculated when studying
the effect of the inner liquid viscosity and in part of the thin layer approximation.
The dispersion relation for case II is given in Appendix B.

The dimensionless parameters involved in the dispersion relation (2.22) include
the density ratios S = ρ1/ρ2 and Q = ρ3/ρ2,
the interfacial tension coefficient ratio Γ = γ1/γ2,
the electrical permittivity ratios εr1 = ε1/ε3 and εr2 = ε2/ε3,
the relative electrical relaxation time τ = R2σ2/U2ε2,
the Reynolds number Re = ρ2U2R2/µ2,
the Weber number We= ρ2U

2
2 R2/γ2,

the electrical Euler number Eu = ε3V
2
0 /ρ2U

2
2 R2

2 ln2(R2/R3).
The last three dimensionless parameters represent the relative magnitudes of the
viscous force, surface tension and electrical force to the inertia force, respectively.

In most experiments, R3 is much larger than R2, i.e. the radius ratio b � 1. In the
dispersion relation (2.22) the parameter b appears only in J and L, for which we have
the limits:

J |b→∞ = −K1(k)/K0(k) and L|b→∞ = −K0(k)/K1(k).

For large Reynolds numbers (Re � 1), the dispersion relation (2.22) and the
amplitude ratios (2.23a, b) can be simplified dramatically to

D(k, ω) = ak2(T1
3 − 
1)(T2
3 + 
2) + 1 = 0, (2.25)

and (
η̂2

η̂1

)
1

= −ak(T1
3 − 
1),

(
η̂1

η̂2

)
2

= k(T2
3 + 
2), (2.26)

with

T1 = −ω−2

[
iSω

k

(
iω

I0(ka)

I1(ka)
− 2Λ

a

)
+

Γ

We a2
(1 − (ka)2)

]
,

T2 = ω−2

[
iQω

(
−iωL +

2

b2 − 1

)
− Euk(1 + kJ ) +

k

We
(1 − k2)

]
.

If the relative velocity ratio Λ =0, the dispersion relation (2.25) is consistent with that
for the electrified coaxial jet in the equipotential case where Λ is fixed to 1 (Li et al.
2005).
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In addition, the dispersion relation (2.22) can be reduced to that for a single-liquid
jet in a simple way. If the radius ratio a approaches zero, the jet consists only of
the outer leaky dielectric liquid. The inner interface vanishes, and the numerator of
(2.23b) is zero, yielding

Re2H2 − k

(
(l2 + k2)


2


3

+ 2k

)(
EuReζ

ω
+ 1 +

l2

k2

)

+ 2lk2

(

5


4

+
1

l

)(
EuReζ

ω
+ 2

)
= 0, (2.27)

where 
2/
3 = −I0(k)/I1(k), 
5/
4 = −I0(l)/I1(l) and
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k
I0(k)

I1(k)
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EuRe
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(
−k
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I1(k)
+ l

I0(l)

I1(l)

) .

After some algebra, the above equation is written in a clearer form:

ςω2 +
2ω

Re
(2k2ς − 1) +

4k2

Re2
(k2ς − l2ςv) + T +

(
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Eukς
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J
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where

ς (k) =
I0(k)

kI1(k)
, ςv(l) =

I0(l)

lI1(l)
,

E =
εr2

kJ

(
1 +

τ

ω

)
− ς, T =

iQω

k

(
iωL − 2

b2 − 1

)
+ Eu(1 + kJ ) − 1

We
(1 − k2).

Equation (2.28) is the dispersion relation for a viscous jet with a leaky dielectric
liquid, which exactly corresponds with López-Herrera et al. (2005).

3. Numerical results
The dimensionless dispersion relation (2.22) is a quartic equation for the complex

frequency ω. Given an axial wavenumber k, there are generally four eigenvalues
corresponding to four different modes, but only two of the modes are unstable in
the Rayleigh regime (Chen & Lin 2002); these are usually called the para-sinuous
mode and the para-varicose mode. Suppose the interface perturbation amplitude
ratio η̂1/η̂2 = |η̂1/η̂2|exp (i(θ1 − θ2)), where |η̂1/η̂2| is the relative magnitude of the
amplitudes, and 
θ = θ1 − θ2 is the corresponding phase difference. The para-sinuous
mode means that the inner liquid–liquid interface and the outer air–liquid interface are
perturbed almost in phase, i.e. 
θ approaches 0◦; and the para-varicose mode means
that the two interfaces are perturbed nearly out of phase, i.e. 
θ approaches 180◦.
Under most experimental situations (López-Herrera et al. 2003), the para-sinuous
mode is less stable than the para-varicose one and is dominant in the jet instability,
promoting the formation of compound droplets. However, as long as the unstable
para-varicose mode exists, coaxial electrospraying is negatively influenced by it. On
the other hand, under a sufficiently intense electric field and sufficiently large flow
rate, those non-axisymmetric modes may become comparable to the axisymmetric
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ones, and even become dominant (Son & Ohba 1998; Li et al. 2005, 2006). In the
present paper we study the theoretical model for the axisymmetric instability, and try
to maintain the axisymmetric modes dominant through controlling the values of the
dimensionless parameters. The non-axisymmetric instability deserves special study.

In this section, we solve (2.22) numerically in order to study the behaviour of
the coaxial jet under the radial electric field, mainly taking case I as an example.
For convenience of calculation and comparison, a set of dimensionless parameters
is chosen as a reference set. In case I, we take water and air as the outer and
inner liquids, respectively, because water is the most common leaky dielectric and
air is a common perfect dielectric, corresponding to the case of the outer-driving
coaxial electrospraying studied in the paper. Their physical properties can be found
in López-Herrera et al. (2003). The reference dimensionless parameters are Q =0.001,
S = 0.001, a = 0.8, b =10, Λ = 0.2, Re = 10, We= 10, Γ = 1, Eu = 0.15, εr1 = 1, εr2 = 80
and τ = 1. In the calculation the dimensionless parameters are fixed to the reference
values unless stated otherwise.

3.1. Effect of liquid viscosity and comparison with the inviscid model

In order to study the effect of the viscosity of the outer liquid, we first establish
an inviscid model. In the inviscid model, both the inner liquid and the outer liquid
are assumed to be inviscid, and the velocities of the inner and outer liquids in the
basic state are assumed to be uniform with a discontinuity at the inner and outer
interfaces. Denoting the base axial velocities of the inner and outer liquids by U1

and U2, respectively, a new dimensionless parameter Λ† = U1/U2 − 1 is obtained. For
leaky dielectrics, the dimensionless dispersion relation of this inviscid model is also
expressed in the form of equation (2.22), but with different perturbation amplitude
ratios: (

η̂2

η̂1

)
1

=
k2aH1
3 + kaω2
1

ω2
, (3.1a)

(
η̂1

η̂2

)
2

= −k2H2
3 − kω2
2

ω2 + Euk3Jξ
3

, (3.1b)

where

H1 = −S(ω + iΛ†k)2I0(ka)

kI1(ka)
+

Γ

We a2
(1 − (ka)2), (3.2a)

H2 = −Qω2

k
L + Eu(1 + k(ζ + 1)J ) − 1

We
(1 − k2), (3.2b)

ζ =
kω(J − 
2/
3)

kεr2(ω + τ )κ − kωJ
, (3.2c)

ξ =
ω/
3

kεr2(ω + τ )κ − kωJ
. (3.2d)

The other symbols are the same as in the viscous model. The coordinate system in
this inviscid model is still moving with velocity U2.

Note that the dispersion relation for the inviscid model is a little different from
equation (2.25) for the case of large Reynolds numbers, because the tangential
dynamic continuity condition at the outer interface is treated differently in these two
cases. In the large-Re case the tangential component of the electrical stress at the
outer interface is very small, or even vanishes. In such a case the jet surface can be
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Figure 3. The influence of the Reynolds number on the growth rates of (a) the para-varicose
mode and (b) the para-sinuous mode, for Λ= 0. The dashed curves are for the inviscid leaky
dielectric model.

regarded to be approximately equipotential. However, in the inviscid leaky dielectric
case, the tangential dynamic condition is not satisfied because the viscous shear is
not taken into account, and the jet may be non-equipotential. The dispersion relation
given by (3.1a, b) reduces to that for the equipotential case only if the relative electrical
relaxation time τ approaches infinity (Li et al. 2005). In addition, if τ approaches zero
it is reduced to the dispersion relation for the non-equipotential case (Li et al. 2006).

The influence of the viscosity of the outer liquid on the unstable modes is shown
in figure 3, where the relative velocity ratio Λ = 0. For comparison, the curves for
the large Reynolds number limit (marked with ‘∞’) and the inviscid leaky dielectric
model with the relative velocity ratio Λ† = 0 (dashed) are also plotted. It is clear that
the growth rates of both the para-varicose mode in figure 3(a) and the para-sinuous
mode in figure 3(b) are greatly enhanced as the Reynolds number increases, indicating
that the viscosity of the outer liquid has a remarkable stabilizing effect on the jet
instability. For the para-sinuous mode, the large-Re limit, i.e. the equipotential case, is
the most unstable. However, for the para-varicose mode, the inviscid leaky dielectric
model possesses the maximum growth rate. In general these two special cases are very
close. The reason may be that the reference value of the relative electrical permittivity
of the outer liquid is so high (εr2 = 80) that the denominators of (3.2c) and (3.2d) are
large enough to make the effects of ζ and ξ negligible. On the other hand, it is shown
in the figure that the viscosity of the outer liquid has no apparent effect on the range
of the unstable axial wavenumbers. The cut-off wavenumber kc is approximately 1.25
for the para-varicose mode and 1.6 for the para-sinuous mode.

In case I, the basic velocity profile of the inner liquid is parabolic, as defined
in equation (2.20), where a dimensionless parameter Λ is involved. Apparently, this
parameter represents the effect of the shear in the axial velocity on the jet instability.
The influence of Λ on the growth rates of the unstable modes is illustrated in figure 4.
As the density ratio S (=0.001) in the reference state is so small that the effect of
Λ cannot be shown clearly, in the calculation the value of S is chosen to be 0.1.
Although the density ratio S is increased, the para-varicose mode is little influenced,
as shown in figure 4(a). In figure 4(b) the para-sinuous mode is stabilized slightly as
Λ increases. If the density of the inner liquid is comparable to that of the outer liquid,
the effect of Λ becomes more significant. The calculation shows that the growth rate
of the para-varicose mode is also reduced as Λ increases. It is well known that the
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Figure 4. The influence of the relative velocity ratio Λ on the growth rates of (a) the
para-varicose mode and (b) the para-sinuous mode, for S = 0.1.

para-sinuous and para-varicose modes are associated primarily with the inner and
outer interfaces (Chen & Lin 2002; Li et al. 2005, 2006), respectively. Apparently,
the parameter Λ influences the mode closely connected with the inner interface more
strongly. In general, our result is in accordance with the fact that the shear in the
axial velocity has a stabilizing effect on the jet instability (Mestel 1994). Similar to the
liquid viscosity, the shear in the axial velocity has a negligible effect on the unstable
wavenumber range. The critical wavenumber is approximately the same as shown in
figure 3.

In coaxial electrospraying experiments with two liquids, the inner one is usually
highly viscous (López-Herrera et al. 2003; Chen et al. 2005). However, in case I
the viscosity of the inner liquid is neglected. Therefore, it is necessary to study
the jet instability in case II, in which the inner liquid viscosity is allowed to be
comparable to or larger than that of the outer liquid. We take sunflower oil as
the inner dielectric liquid. Its physical properties can be found in López-Herrera
et al. (2003). Figure 5 illustrates the effect of the relative viscosity of the inner liquid
µr = µ1/µ2 on the growth rates of the unstable modes, where the other parameters are
Q =0.001, S =0.84, a = 0.8, b = 10, Λ = 0.2, Re = 10, We= 10, Γ =0.23, Eu =0.15,
εr1 = 3.4, εr2 = 80 and τ = 1. In the figure, both the para-varicose and para-sinuous
modes are stabilized greatly by the viscosity of the inner liquid. In particular, for
relatively large viscosity ratio µr the growth rates of both the modes are much smaller
than in the inviscid case µr = 0, indicating that the jet goes a long way before breakup.
Like the viscosity of the outer liquid, the inner liquid viscosity has a negligible effect
on the range of the unstable wavenumbers.

3.2. Discussion on the electrical relaxation time and two limiting cases

For EHD leaky dielectrics, there are two important characteristic times, i.e. the
electrical relaxation time and the hydrodynamic time. The electrical relaxation time
τe ∼ ε/σ measures the speed of charge relaxation, i.e. the contribution of conduction
to charge transportation. The hydrodynamic time can have several definitions, such
as the capillary time τc ∼ (ρL3/γ )1/2, the viscous diffusion time τv ∼ ρL2/µ, and
the convective flow time τF ∼ L/U . In this model, we choose the convective flow
time τF ∼ R2/U2 as the characteristic hydrodynamic time, which measures the
contribution of convection to charge transportation. As a result, a dimensionless
parameter τ = (R2σ2) / (U2ε2) measuring the relative magnitude of the hydrodynamic
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time and the electrical relaxation time, i.e. the relative importance of conduction and
convection, is involved in the dispersion relation (2.22).

In this section, we derive two limiting cases according to the relative magnitude
of the electrical relaxation time and the hydrodynamic time in a more generic sense.
Selecting an appropriate hydrodynamic time τh, the surface charge conservation
equation (2.17) is non-dimensionalized as follows:

∂qs

∂t
+ u · ∇qs − qsn · (n · ∇)u +

τh

τe

[σ E] · n = 0. (3.3)

For well-conducting liquids, the electrical relaxation time τe is usually several orders
of magnitude smaller than the hydrodynamic time τh, i.e. τh � τe, indicating that
charge is transported mainly by conduction and the effect of convection is negligible.
This case is called the small electrical relaxation time limit (SERT). In this limit the
surface charge conservation equation (3.3) reduces to

[σ E] · n = 0. (3.4)

Note that the surface charge density is absent in equation (3.4). It can be obtained
through the boundary condition (2.16). In our model, the condition (3.4), which is
obeyed at the outer air–liquid interface, implies that the outer liquid is equipotential
(i.e. the equipotential case).

Conversely, for relatively imperfectly conducting liquids with a relatively high
velocity, the electric relaxation time τe may be much larger than the hydrodynamic
time τh, i.e. τh � τe. In such a case charge convection becomes significant and the
effect of conduction is negligible. It is called the large electrical relaxation time limit
(LERT). In this limit equation (3.3) reduces to

∂qs

∂t
+ us · ∇qs − qsns · (ns · ∇)us = 0, (3.5)

where only the bulk conduction disappears, corresponding to the non-equipotential
case. In case LERT, charge at the interface cannot be reset instantaneously to
maintain the interface equipotential. Equation (3.5) may serve as the surface charge
conservation equation for this limit. In the study of the interfacial instability of a
conducting liquid jet under a radial electric field (Artana, Romat & Touchard 1998;
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Li et al. 2006), both the equipotential (SERT) and non-equipotential (LERT) cases
are considered.

According to these two limits, expressions (2.23a) and (2.23b) are reduced, with the
dispersion relation (2.22) unchanged in form. For SERT, the amplitude ratio of the
initial disturbances is
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where H1 is the same as (2.24a) and
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For LERT, the amplitude ratio of the initial disturbances has the same form as (2.24a)
and (2.24b), but with
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Figure 6 illustrates the growth rates of the unstable modes for these two limit
cases, solid curves for SERT (i.e. τ → 0) and dashed curves for LERT (i.e. τ → ∞),
where several values of the electrical Euler number are considered. It can be seen
from figure 6(a) that for the para-varicose mode only solid curves for SERT appear
when the electric field exists. The difference between the two limit cases is remarkable,
because for LERT the growth rate of the para-varicose mode decreases to zero
when the electrical Euler number exceeds 0.01. However, for SERT the growth
rate is enhanced by the electric field and the unstable region moves towards relatively
short waves. On the other hand, for the para-sinuous mode as shown in figure 6(b),
the difference between two limit cases is discernible but not significant for the
range of Eu studied, indicating that the influence of the relative electrical relaxation
time τ on the jet instability is small. This may be attributed to the large relative
electrical permittivity of the outer liquid (εr2 = 80), which makes kεr2(ω + τ )κ in the
denominators of (2.24d) and (2.24e) a large term, and consequently the influence of
τ is weakened.

In addition, we study the influence of the relative electrical permittivity εr2 on the
growth rate of the para-sinuous mode. Figure 7(a, b) illustrates the results, where
the electrical Euler number is fixed at 0.15 and 0.45, respectively, and the limit case
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εr2 → ∞ is also plotted. It can be seen in the figure that for both the electrical Euler
numbers, the growth rate of the para-sinuous mode is enhanced with εr2 increasing.
When εr2 = 80, the para-sinuous mode approaches the limit case εr2 → ∞ very closely.
Therefore, both the limits εr2 → ∞ and τ → ∞ reduce the general dispersion relation
(2.22) to that for the equipotential case. Moreover, it is proved that SERT may
serve as an approximation for the viscous leaky dielectric model when the electrical
permittivity of the outer liquid is sufficiently large.

3.3. Effect of the electric field together with the other parameters on the jet instability

For the inviscid coaxial jet under a radial electric field (Li et al. 2006), it is found that
the radial electric field has a dual effect on both the para-varicose and para-sinuous
modes, destabilizing them greatly when the axial wavenumber k exceeds a critical
value, and stabilizing them if k is smaller than that value. In the present viscous
model, the dual effect of the electric field is persistent for both the para-varicose
mode and para-sinuous mode, as shown in figure 6.

It is well known that when arbitrary disturbances are applied to the jet, the
perturbation wave with maximum growth rate and those close to it grow faster
than the others, which become dominant in the jet breakup process. Although two
unstable modes occur in the jet instability process, the para-sinuous mode is much less
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stable than the para-varicose one in most situations. Consequently, the most unstable
wavenumber kmax comes from the para-sinuous mode. In figure 6(b), the value of kmax

is amplified as the electrical Euler number increases, predicting that the most likely
wavelength λ= 2πR2/kmax is diminished by the radial electric field.

It is necessary to study the effect of several important dimensionless parameters,
such as the Weber number and Reynolds number, on the dominant wavenumber kmax

and corresponding maximum growth rate ωmax . Figure 8(a, b) illustrates the effect of
the Weber number and electrical Euler number on kmax and ωmax , respectively. The
selected values of the Weber number are relatively small, since the coaxial jet is very
thin and the surface tension is generally large in the experiments. It is found that the
electric field influences kmax and ωmax slightly when the Weber number is relatively
small (We< 5). However, at relatively large Weber numbers (We > 10), the electric
field enhances kmax and ωmax distinctly. The behaviour of kmax and ωmax indicates that
at small Weber numbers the jet instability is dominated primarily by the capillary
force, while with the increase of We, the jet instability is dominated primarily by
the electrical force. On the other hand, both the electrical Euler number and Weber
number change the cut-off wavenumber kc significantly, as shown in figure 8(c).
Obviously, kc is enlarged as We increases, especially at large Euler numbers. So the
instability region may be extended into the first wind-induced regime, which reduces
the formation of monodisperse droplets in oacxial electrospraying.

Figure 9 illustrates the effect of the Reynolds number on the dominant wavenumber
kmax and maximum growth rate ωmax . In figure 9(a) it is apparent that the effect of
the Reynolds number on kmax is basically small. On the other hand, the Reynolds
number has a remarkable effect on the maximum growth rate, as shown in figure 9(b).
In general, liquid viscosity stabilizes the jet significantly. Note that in figure 9(a) the
curve corresponding to Re = 1 seems unusual and that in figure 9(b) the maximum
growth rate for Re = 1 is very small. This reminds us that at such a low Reynolds
number the non-axisymmetric modes may become comparable to or even less
stable than the axisymmetric modes. In practice, in experiments most successful
coaxial electrospinning, which is a typical unstable non-axisymmetric characteristic,
uses highly viscous liquids. The competition between the axisymmetric and non-
axisymmetric modes under an electric field is of both theoretical and practical
interest, which deserves special study. Also note that for the range of the electrical
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Euler number Eu considered in the figure the electric field increases kmax greatly but
influences ωmax little for the Reynolds numbers studied.

3.4. Discussion on the thin layer approximation a → 1

For coflowing jets, one extreme case is that the thickness of the outer annular liquid
layer is thin. In this section, we seek relatively simple dispersion relations applicable
to the thin layer coating case a → 1 for case I and case II. Some details are given
in Appendix C, where case I is taken as an example. The thin layer approximation
ultimately results in the dispersion relation
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for case II. The above expressions appear much simpler than for the coaxial jet.
However, their validity needs to be evaluated. Note that under the thin layer
approximation the viscosity and dynamic force of the outer liquid, as well as the
electrical permittivity of the outer liquid, have no influence. Only the electrical
permittivity of the inner liquid and the electrical relaxation time of the outer liquid
layer play a role. Especially in the limit case τ → ∞ equations (3.9) and (3.10),
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Figure 10. The effect of the radius ratio a on the growth rate of the para-sinuous mode for
case I: (a) the reference state, (b) S = 0.1 and (c) S = 0.84, Λ= 0. The curves for a = 0.8 in (a)
and a → ∞ in (c) are dashed to make the plot clearer.

respectively, reduce to

ω2

(
QL − S

I0(k)

I1(k)

)
+2iω

(
Q

b2 − 1
− SΛ

)
+

1 + Γ

We
k(1 − k2)−Eu(1 + kJ ) = 0, (3.11)

and

ω2 S

k

I0(k)

I1(k)
+

2µrω

Re

(
2k

I0(k)

I1(k)
− 1

)
+

4µ2
r k

2

SRe2

(
k
I0(k)

I1(k)
− l1

I0(l1)

I1(l1)

)

+
iQω

k

(
iωL − 2

b2 − 1

)
+ Eu(1 + kJ ) − 1 + Γ

We
(1 − k2) = 0. (3.12)

The dispersion relations (3.11) and (3.12) accord with those for the single-liquid jet
in the equipotential case but with double surface tension, the former for the inviscid
liquid and the latter for the viscous liquid.

Figure 10 illustrates the effect of the radius ratio a on the growth rate of the para-
sinuous mode for case I, where the thin layer approximation a → 1 is also plotted.
In figure 10(a), where the other parameters are kept at reference values, the growth
rate of the para-sinuous mode is sensitive to the magnitude of a as it approaches 1,
and the growth rate is dramatically increased, probably owing to the relatively low
density of the inner liquid and ambient air. In figure 10(b), where the density of the
inner liquid is increased a little, the difference of the growth rate between case a = 0.9
and the limit case a → 1 is reduced. Furthermore, when the density of the inner
liquid is comparable to that of the outer liquid, as shown in figure 10(c), the thin
layer approximation seems to be a good estimation. It can also be seen in the figure
that the density of the inner liquid influences the growth rate of the para-sinuous
mode considerably. Its effect, as well as the validity of the thin layer approximation
in the other parameter regions, needs to be studied further. On the other hand, the
calculation result shows that as the Reynolds number varies the para-sinuous mode
always approaches the limit case as a increases. For relatively large Reynolds numbers



304 F. Li, X.-Y. Yin and X.-Z. Yin

0.08

0.10
(a) (b)

1

0.8
0.6

0.6

0.8

1

0.10

0.5

0 0 4

k

a

6 8

0.06

0.04

ωr

0.02

0 0.5 1.0

k

1.5 2.0

a

Figure 11. The effect of the radius ratio a on the growth rate of the para-sinuous mode
for case II: (a) Eu = 0.15, µr = 1.0, and (b) Eu = 0.45, µr = 43. The other parameters are
Q =0.001, S = 0.84, a = 0.8, b = 10, Λ= 0.2, Re = 10, We =10, Γ = 0.23, εr1 = 3.4, εr2 = 80 and
τ = 1. The dashed line for a = 0.8 in (a) is to make the plot clear.

the approach is quicker. This is easily understood by considering that in equation (3.9)
viscosity is absent. Our calculation result also shows that when the radius ratio a

approaches 1, the growth rate of the para-varicose mode becomes negligible. The
result accords well with the theoretical prediction in Appendix C.

The effect of the radius ratio a on the growth rate of the para-sinuous mode
for case II is shown in figure 11, with the thin layer approximation a → 1 plotted.
In figure 11(a), where the electrical Euler number and the inner liquid viscosity
are relatively small, the para-sinuous mode is stabilized slightly as a approaches 1.
However, in figure 11(b), where the electric Euler number and inner liquid viscosity
are relatively larger, the para-sinuous mode is stabilized dramatically as a increases.
For the former case, the thin layer approximation predicts the jet instability well, but
for the latter, it is inaccurate.

4. Conclusions
In this paper, we study the temporal linear instability of a charged coflowing

jet with two immiscible viscous liquids under a radial electric field. The analytical
dimensionless dispersion relation is derived for axisymmetric disturbances and the
complex eigen-frequency is solved numerically. Two different unstable modes, i.e. the
para-sinuous mode and the para-varicose mode, are found in the Rayleigh regime.
According to the calculation results, the para-sinuous mode is much more unstable
than the para-varicose mode, and become dominant in the jet instability.

It is found that the viscosity of the outer liquid and the inner liquid, as well as the
shear in the basic axial velocity, have a stabilizing effect on the jet instability, both the
para-varicose mode and para-sinuous mode being considerably suppressed by them.
However, the liquid viscosity and shear in the basic axial velocity have little influence
on the unstable wavenumber range.

From the leaky dielectric model, two limit cases, namely the small electrical
relaxation time limit (SERT) and the large electrical relaxation time limit (LERT),
are obtained, based on the relative magnitude of the electrical relaxation time and
the hydrodynamic time. For the para-sinuous mode, the difference between these two
limits is negligible as long as the electrical permittivity of the outer liquid is sufficiently
large, and in such a situation SERT can be used instead of the leaky dielectric model.
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Similarly to the inviscid model, the radial electric field has a two-fold effect on
the growth rate of the para-sinuous mode, stabilizing it for wavenumbers smaller
than a critical value and destabilizing it when the wavenumber exceeds that value.
Moreover, the dominant wavenumber and maximum growth rate, as well as the cut-
off wavenumber, are generally amplified by the electric field. The Weber number has
a similar effect on the dominant wavenumber and maximum growth rate.

The thin layer approximation is discussed briefly. Under the thin layer
approximation, only one unstable mode, i.e. the para-sinuous mode, exists. Compared
with the exact solution of the leaky dielectric model, if the viscosity of the inner liquid
is neglected the thin layer approximation is more accurate when the density of the
inner liquid is comparable to that of the outer liquid, but if the inner liquid viscosity
is taken into account the thin layer approximation is accurate only for a relatively
small electric field.

The authors are indebted to the referees for many valuable comments that helped
to improve the manuscript. The work was supported by the National Natural Science
Foundation of China Project No. 10572137 and the Graduate Innovation Project of
USTC No. KD2005036.

Appendix A. Derivation of the dispersion relation for case I
In case I, the inner liquid and air are inviscid, with parabolic basic velocity profiles.

In such a case, the radial component of the velocity satisfies the following Bessel
equation (Lim & Redekopp 1998):

d2û1,3

dr2
+

1

r

dû1,3

dr
−

(
k2 +

1

r2

)
û1,3 = 0, (A 1)

where the ‘hats’ stand for the initial perturbation amplitudes. The solutions of (A 1)
are the linear combination of the modified Bessel functions. Their coefficients are
determined by using the boundary conditions (2.3) and (2.6)–(2.8). Suppose that the
cylindrical coordinate system (r, θ, z) is moving with velocity U2, then the solutions
are

û1 = ωη̂1

I1(kr)

I1(ka)
, û3 = ωη̂2

I1(kr)K1(kb) − K1(kr)I1(kb)

I1(k)K1(kb) − K1(k)I1(kb)
. (A 2)

The axial velocity and pressure can be obtained using equations (2.1) and (2.2).
As the outer liquid is viscous, we decompose the velocity perturbation into two

terms (González et al. 2003; López-Herrera et al. 2005), i.e. u2 = up + uv , where up

and uv satisfy the following linearized equations:

∇ · up = 0,
∂up

∂t
= −∇p2, ∇ · uv = 0,

∂uv

∂t
=

1

Re
∇2uv. (A 3)

For up , a potential function φ2 (up = ∇φ2) is introduced, which satisfies the Laplace

equation ∇2φ2 = 0. Therefore, the amplitude φ̂2 satisfies the modified Bessel equation

d2φ̂2

dr2
+

1

r

dφ̂2

dr
− k2φ̂2 = 0. (A 4)

The solution is φ̂2 = A1I0(kr) + A2K0(kr), where A1 and A2 are coefficients to be
determined by boundary conditions. The amplitudes of the radial and axial velocity
components and the pressure can also be obtained.
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For the viscous part, the radial momentum equation yields

d2ûv

dr2
+

1

r

dûv

dr
−

(
k2 + Reω +

1

r2

)
ûv = 0. (A 5)

The solution is ûv = A3I1(lr) + A4K1(lr), where A3 and A4 are coefficients to be
determined, and l =

√
k2 + Reω. Then the continuity equation gives the solution of

the axial velocity component, ŵv = il(A3I0(lr) − A4K0(lr))/k.
For the electric field, the perturbations of the electrical potentials, ψi , i = 1, 2, 3,

also satisfy the Laplace equation (2.11). Further, their perturbation amplitudes ψ̂ i ,
also satisfy the modified Bessel equation (A 4). Consequently their solutions are the
linear combinations of two modified Bessel functions I0(kr) and K0(kr), which gives
five coefficients A5–A9 to be determined.

For the present problem, there are in all twelve unknown quantities: A1–A9, η̂1,
η̂2 and q̂s (the perturbation amplitude of the surface charge density). On the other
hand, the boundary conditions (2.7)–(2.8) and (2.12)–(2.17) provide twelve equations
to solve the unknown. These equations set up a homogeneous linear system. The
system has non-trivial solutions only if the determinant of its coefficient matrix is
null, which provides the dispersion relation we need. However, considering the size
of the coefficient matrix, it is hard to obtain an explicit expression for the dispersion
relation in such a way. Therefore, we choose to solve the equations step by step as
outlined in the following, aiming to obtain the dispersion relation in a more compact
form.

For the outer liquid, according to the continuity equation,

ŵ2 =
i

k

(
dû2

dr
+

û2

r

)
. (A 6)

Differentiating the above equation with respect to rand using the momentum equation
in the radial direction, we have

dŵ2

dr
=

i

k

(
l2û2 + Re

dp̂2

dr

)
. (A 7)

Then using the linearized kinematic boundary conditions at the interfaces, we obtain

dŵ2

dr

∣∣∣∣
r=a+η1

=
iω

k
[l2η̂1 − Rek(A1I1(ka) − A2K1(ka))], (A 8a)

dŵ2

dr

∣∣∣∣
r=1+η2

=
iω

k
[l2η̂2 − Rek(A1I1(k) − A2K1(k))]. (A 8b)

Substituting the corresponding solutions into the linearized kinematic boundary
conditions and the tangential dynamic boundary conditions, we obtain the expressions
for A1−A4. The process and the expressions are omitted for brevity. On the other hand,
substituting the corresponding solutions into the electric field boundary conditions,
we can obtain A5 − A9. Finally, substituting the expressions for the corresponding
quantities into the linearized normal dynamic boundary conditions, (2.23a) and (2.23b)
are obtained, together with the dispersion relation (2.22).
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Appendix B. Derivation of the dispersion relation for case II
In case II, the dispersion relation is also written in the form of equation (2.22), but

with the amplitude ratio of the interface perturbation:(
η̂2

η̂1

)
1

=

[

4

a

(
Π

H
+ ω

)(
EuReζ

ω
+ 1 +

l22
k2

)
− 
3

a

Π

H

(
EuReζ

ω
+ 2

)]−1

×
[
k
1
4

(
Π

H
+ ω

) (
1 +

l22
k2

−µr

(
1 +

l21
k2

))

− l2
3
6

Π

H

(
2 − µr

(
1 +

l21
k2

))

+ ω
3
4

(
2(1 − µr )

(
Θ − 1

a

)
− ReΘ

k2

Π

H

)

+
Γ

We a2
(1 − (ka)2)Re
3
4 +

EuReξ

ω

1

a

(
Π

H

3 −

(
Π

H
+ ω

)

4

)]
, (B 1a)

(
η̂1

η̂2

)
2

=

[

4

(
1 +

l22
k2

−µr

(
1 +

l21
k2

)) (
−

(
l22 + k2

)
+

Sk2Ξ
1

H
3
4

)

+ 
3

(
2 − µr

(
1 +

l21
k2

))(
2k2 − Skl2Ξ
6

H
3
4

)

− SReωΘΞ

kH
− Re2
3
4EukξJ +

EuReξ

ω

(
SkΞ

aH

(
1


4

− 1


3

)

+ k3
2
4

(
1 +

l22
k2

)
− 2l2k

2
3
5

)]−1 [
− SkΞ 2

aH
3
4

+ Re2H2
3
4

− k
4

((
l22 + k2

)

2 + 2k
3

) (
EuReζ

ω
+ 1 +

l22
k2

)
+ 2l2k

2
3

×
(


5 +
1

l2

4

)(
EuReζ

ω
+ 2

)
− EuReζ

ω

SkΞ

aH

(
1


4

− 1


3

)]
, (B 1b)

where

l1 =
√

k2 + ReωS/µr, l2 =
√

k2 + Reω,

Π = Sω

(

1


3

− I0(ka)

I1(ka)

)
+

2(1 − µr )k
2

Re

(
I0(ka)

I1(ka)
− Θ

k

)
,

H =
I0(ka)

I1(ka)
− Θ

k
− S

(

1


3

− l2

k


6


4

)
,

Θ = l1
I0(l1a)

I1(l1a)
, Ξ = 2
3 − 
4

(
1 +

l22
k2

)

ζ =

[
εr2 (ω + τ ) κ − ωJ +

Eu

ω

(
S

aH

(
1


3

− 1


4

)2

+ k

(
k

2


3

− l2

5


4

))]−1

×
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ωJ− k2
2

Re 
3

(
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l22
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)
+

2l2k
5

Re 
4

− S

Re aH

(
1


3

− 1


4

)(
1


3

(
1 +

l22
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)
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4
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,
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ξ =

[
εr2 (ω + τ ) κ − ωJ +

Eu

ω

(
S

aH

(
1


3

− 1


4

)2

+ k

(
k

2


3

− l2
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4

))]−1

×
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k

Re 
3

(
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−µr

(
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l21
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S
1
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(
1


3

− 1


4
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− k

Re 
4

(
2 − µr

(
1 +

l21
k2

))(
1 +

l2S
6

kH

(
1


3

− 1


4

))
− SωΘ

k2H

(
1


3

− 1


4

)]
.

and the relative viscosity of the inner liquid µr = µ1/µ2. Note that κ , H2 and the other
symbols are the same as in case I. It is shown that the dispersion relation for case II
reduces to that for case I as long as the viscosity of the inner liquid is neglected (i.e.
µr = 0). The inner liquid viscosity makes the problem much more complicated.

Appendix C. Derivation of the thin layer approximation a → 1

In the instability analysis of an annular viscous liquid jet, the thin sheet
approximation is usually derived (Meyer & Weihs 1987; Shen & Li 1996; Chen
et al. 2003). If the inner and outer radii of the annular jet are supposed to approach
infinity with the thickness of the liquid layer constant, a plane liquid sheet is obtained,
as in Meyer & Weihs (1987) and Shen & Li (1996). But in this paper, we follow the
approach similar to Chen et al. (2003), expanding the dispersion relation under the
thin layer limit. The derivation process is outlined below, taking case I as an example.

Define a quantity δ = 1−a. We expand the dispersion relation (2.22) under the thin
layer approximation δ � 1. First, the expansions of 
0 − 
6 are


0= − δ − δ2

2
+ O(δ3), 
1=

1

k
+

kδ2

2
+ O(δ3), (C 1a)


2=
1

k
+

δ

k
+

kδ2

2

(
1 +

2

k2

)
+O(δ3), 
3=−δ − δ2

2
− k2δ3

6

(
1 +

3

k2

)
+O(δ4), (C 1b)


4= − δ − δ2

2
− l2δ3

6

(
1 +

3

l2

)
+O(δ4), 
5=

1

l
+

δ

l
+

lδ2

2

(
1 +

2

l2

)
+O(δ3), (C 1c)


6=
1

l
+

lδ2

2
+ O(δ3). (C 1d)

Then, the expansions of κ , ζ and ξ are

κ =
εr1

εr2

I1(k)

I0(k)
+ k

(
1 − εr1

εr2

)[
1 +

εr1

εr2

(
I1(k)

I0(k)

)2
]

δ + O(δ2), (C 2a)
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)(
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δ + O(δ2)

, (C 2c)
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where κO(δ) represents a coefficient of O(δ) in the expansion of κ . Now we write the
coefficients of the interface perturbation amplitudes η̂1 and η̂2 individually for each
order, i.e.
for O(1),

(η̂1)1 : (l2 − k2)
EuReζO(1/δ)

ω
, (η̂2)1 : (k2 − l2)

EuReξO(1/δ)

ω
,

(η̂1)2 : (k2 − l2)
EuReζO(1/δ)

ω
, (η̂2)2 : (l2 − k2)

EuReξO(1/δ)

ω
;

for O(δ),

(η̂1)1 : Re2EukJ ζO(1/δ) + (l2 − k2)
EuReζO(1)

ω
+

(l2 + k2)2

k2

− 4k2 +
3

2
(l2 − k2)

EuReζO(1/δ)

ω
,
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ω
+
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3

2
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ω
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ω
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2
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ω
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ω
− (l2 + k2)2

k2
+ 4k2 +

1

2
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For the first order O(1), (η̂2/η̂1)1 = (η̂1/η̂2)2 ≈ 1, indicating that under the thin layer
approximation the amplitudes of the perturbations at the inner and outer interfaces
are nearly equal. Moreover, the difference of the phase angle is nearly 0◦. That is, in
such a case there exists only one unstable mode close to the sinuous mode.
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Substituting the above expansions into the dispersion relation, it is found that
for O(1) and O(δ) the dispersion relation is inherently satisfied. Therefore, the
dispersion relation for the thin layer approximation is given by O(δ2). The process of
simplification is straightforward and is omitted for brevity. Ultimately the dispersion
relation in the form of equation (3.9) is obtained.
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